Effects of cycloheximide treatment on in-vitro development of porcine parthenotes and somatic cell nuclear transfer embryos.

نویسندگان

  • Mario A Martinez Diaz
  • Masami Suzuki
  • Masumi Kagawa
  • Koji Ikeda
  • Yoshiyuki Takahashi
چکیده

This study aimed to verify the beneficial effect of cycloheximide (CHX) treatment on the development of porcine somatic cell nuclear transfer (NT) embryos, which were constructed with enucleated oocytes and cumulus cells by using a single direct current (DC) pulse. In the first experiment, a single DC pulse applied to the induction of fusion and activation of NT embryos gave a high fusion rate. However, cleavage and subsequent development of fused couplets (NT embryos) to the blastocyst stage were poor. Experiment 2 was conducted to determine whether CHX treatment could enhance metaphase II (M II) oocyte activation and improve the subsequent parthenogenetic development. After giving the DC pulse and incubation with or without CHX, M II oocytes incubated with CHX showed higher cleavage and development to blastocysts compared with those incubated without CHX (P < 0. 05). Experiment 3 was carried out to verify the beneficial effect of CHX on the development of NT embryos. The NT embryos treated with the DC pulse and CHX treatment showed higher cleavage and subsequent development compared with those treated with the DC pulse alone (P < 0.05) . The present study demonstrates that CHX treatment enhances the electrical stimulus-induced activation of oocytes and NT embryos, and improves the subsequent development of parthenotes and NT embryos. The results indicate that protein synthesis inhibition treatment required for the induction of oocyte activation promotes the development of NT embryos.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

P-115: Melatonin Increases Developmental Rate of In Vitro Mouse Somatic Cell Nuclear

Background: The beneficial effect of supplementing culture medium with melatonin has been reported during in vitro embryo development of species such as mouse, bovine and porcine. However, the effect of melatonin on the mouse somatic cell nuclear transfer remained unknown. Materials and Methods: In this study, we assessed the effects of various concentrations of melatonin (10-6 to 10-12 M) on t...

متن کامل

O-3: Effect of Melatonin Treatment on Developmental Potential of Somatic Cell Nuclear- Transferred Mouse Oocytes In Vitro

Background Melatonin (N-acetyl-5- methoxytryptamine) is mainly synthesized and secreted in the pineal gland, ovary, testes, bone marrow, retina and lens in mammalian species. It is involved in the detoxification of ROS and protects embryos from oxidative damage. Melatonin acts as a potential free radical scavenger, including peroxyl radical and hydroxyl radical. In addition, it can stimulate th...

متن کامل

Comparative stepwise pattern of reactive oxygen species production during in vitro development of fertilized and nuclear transferred goat embryos

Objective A unique feature of embryo metabolism is production of reactive oxygen species (ROS). It is well established that during in vitro culture, ROS levels increase over normal ranges observed for embryos developed in vivo. This study evaluates and compares the stepwise pattern of ROS production during in vitro development of reconstructed goat embryos produced by zona-free method of somati...

متن کامل

O-18: Epigenetic Modification of Cloned Embryo Development; State of ART

Background: At the outset of the somatic cell nuclear transfer (SCNT) process, the chromatin structure of the somatic cell which governs its state of differentiation undergoes dramatic changes, called reprogramming, and is compelled back to the embryonic stage. However, the overall epigenetic makeup of the resultant cloned embryos has been acknowledged far different from the fertilized embryos....

متن کامل

I-12: Nuclear Reprogramming in Bovin Somatic Cell Nuclear Transfer

Somatic cell nuclear transfer (SCNT or cloning) returns a differentiated cell to a totipotent status; a process termed nuclear reprogramming. Reproductive cloning has potential applications in both agriculture and biomedicine, but is limited by low efficiency. To understand the deficiencies of nuclear reprogramming, our research has focused on both candidate genes and global gene expression pat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Japanese journal of veterinary research

دوره 50 4  شماره 

صفحات  -

تاریخ انتشار 2003